首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   8篇
  国内免费   6篇
电工技术   1篇
化学工业   147篇
金属工艺   42篇
机械仪表   5篇
能源动力   24篇
武器工业   1篇
无线电   6篇
一般工业技术   48篇
冶金工业   5篇
自动化技术   8篇
  2023年   65篇
  2022年   17篇
  2021年   9篇
  2020年   29篇
  2019年   27篇
  2018年   7篇
  2017年   13篇
  2016年   15篇
  2015年   13篇
  2014年   12篇
  2013年   10篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   9篇
  2006年   8篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(10):14301-14306
Recently, the progress of electronic devices toward miniaturization has strongly promoted development of multifunctional materials possessing multiple desirable properties. In this study, we develop and fabricate 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr multifunctional ceramics which show simultaneously considerable electric-field-induced strain and bright green light emission properties. With the introduction of Er3+, the ceramics gradually transform from non-ergodic relaxor phase to ergodic relaxor phase which could reversibly transform to ferroelectric phase under the electric field. As a result, with improving Er3+ content, the shape of the polarization-electric field loops of the ceramics become pinched, and it is obvious that the negative strain disappears while the positive strain gradually increases and reaches a maximum value 0.46% at x = 1.2 mol%. Besides, After the ceramics are poled, the light emission peak are greatly enhanced attributed to the decreased crystal symmetry and increased domain size, and is the strongest at x = 1.2 mol%. These results indicate that 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr ceramics are good candidates for developing multifunctional optoelectronic devices.  相似文献   
2.
To explore the mechanism of phase transformation, YTa3O9 was prepared by an integrated one-step synthesis and sintering method at 1500 °C using Y2O3 and Ta2O5 powders as starting materials. High-temperature XRD patterns and Raman spectra showed that a phase transformation from orthorhombic to tetragonal took place in YTa3O9 through the bond length and angle changes at 300–400 °C, which caused a thermal conductivity rise. To inhibit the phase transformation, a high-entropy (Y0.2La0.2Ce0.2Nd0.2Gd0.2)Ta3O9 (HE RETa3O9) was designed and synthesized at 1550 °C using the integrated solid-state synthesis and sintering method. In tetragonal structured HE RETa3O9, phase transformation was inhibited by the high-entropy effect. Furthermore, HE RETa3O9 exhibited low thermal conductivity, and its tendency to increase with temperature was alleviated (1.69 W/m·K, 1073 K). Good phase stability, low thermal conductivity and comparable fracture toughness to YSZ make HE RETa3O9 promising as a new thermal barrier coating material.  相似文献   
3.
Single-phase polycrystalline Mo2BC ceramic bulks were synthesized successfully from molybdenum, boron, and graphite powders using the spark plasma sintering method. Herein, it was established that the synthesis temperature of the Mo2BC ceramic could be as low as 1300 °C. Transmission electron microscopy (TEM) characterization confirmed that the crystal structure of the Mo2BC ceramic was comparable to that of the MoAlB ceramic. The Vickers hardness of the Mo2BC ceramic was measured to be 18.1 GPa. Additionally, the compressive strength, flexural strength, and fracture toughness were determined to be 1.74 GPa, 457.72 MPa, and 3.26 MPa· m1/2, respectively. The Mo2BC bulk exhibited typical brittle features, in which intergranular and transgranular fractures were the main failure modes.  相似文献   
4.
《Ceramics International》2019,45(13):16166-16172
Cr2O3 is a well-known corrosion resistant oxide used in refractory applications. However, it can oxidize into toxic and water-soluble Cr(VI) compounds upon reaction with calcium aluminate cement phases in the presence of oxygen, which subsequently causes disposal problems after use. This study describes the extent to which chromium in the spinel Mg(Al,Cr)2O4 phase can be oxidized to Cr(VI) when it reacts with the calcium aluminate cement phases C12A7, CA, CA2 and free CaO at 1300 °C in air, using XRD, XPS and leaching tests (TRGS 613 standard) as analytical tools. On reaction with CaO, the Mg(Al,CrIII)2O4 spinel mainly transformed into hauyne (Ca4Al6CrVIO16) and Ca5Cr3O12 which contains both Cr(IV) and Cr(VI). The reaction of C12A7 and CA with the spinel phase also resulted in the formation of Ca4Al6CrO16. Conversely, the reaction of Mg(Al,CrIII)2O4 spinel with CA2 resulted in the formation of only a trace amount of Cr(VI). Water-soluble Cr(VI) leached in large quantities (>100 mg/L) from samples where the Mg(Al,CrIII)2O4 reacted with either C12A7 or CA. Almost no Cr(VI) leached from the sample when Mg(Al,CrIII)2O4 reacted with CaO, using the standard TRGS 613 leach test, but a significant amount of Cr(VI) was released into solution when leached with a HCl solution for 12 h. Both Cr(IV) and Cr(VI) present in the Ca5Cr3O12 dissolved into acidic solution. Only a small amount of Cr(VI) leached from the sample that resulted when spinel was reacted with CA2, even after a prolonged HCl leach. Cr(III) in spinel Mg(Al,Cr)2O4 is very stable and does not leach in either distilled water or acidic solution.  相似文献   
5.
The bismuth nanoparticles modified graphene oxide composites (Bi-NPs@GO) and bismuth nanoparticles (Bi-NPs) were prepared by a hydrothermal method. The activated aluminum/bismuth nanoparticles Bi-NPs@GO/Al and Bi-NPs/Al were prepared. Their hydrolysis reaction performance were studied. The experimental results show that the composite of aluminum and Bi-NPs@GO can react rapidly with water. The 4-h milled Bi-NPs@GO/Al composite shows better hydrogen generation performance and reacted with tap water even at 0 °C. The Bi-NPs@GO/Al composite exhibits high hydrogen generation rate at room temperature. The enhancement of aluminum hydrolysis in the composite may be due to that the addition of nano-scale Bi and graphene oxide.  相似文献   
6.
This paper addresses the nonlinear stress-strain response in glass fibre non-crimp fabric reinforced vinylester composite laminates subjected to in-plane tensile loading. The nonlinearity is shown to be a combination of brittle and plastic failure. It is argued that the shift from plastic to brittle behaviour in the vinylester is caused by the state of stress triaxiality caused by the interaction between fibre and vinylester. A model combining damage and plasticity is calibrated and evaluated using data from extensive experimental testing. The onset of damage is predicted using the Puck failure criterion, and the evolution of damage is calibrated from the observed softening in plies loaded in transverse tension. Shear loading beyond linear elastic response is observed to result in irreversible strains. A yield criterion is implemented for shear deformation. A strain hardening law is fitted to the stress-strain response observed in shear loaded plies. Experimental results from a selection of laminates with different layups are used to verify the numerical models. A complete set of model parameters for predicting elastic behaviour, strength and post failure softening is presented for glass fibre non-crimped fabric reinforced vinylester. The predicted behaviour from using these model parameters are shown to be in good agreement with experimental results.  相似文献   
7.
近年来,高比能锂-硫电池作为最具前景的新能源储存装置之一引起了人们的广泛关注。然而,在该电池体系中,中间产物聚硫化物的溶解造成的穿梭效应会明显降低电池的循环性能和硫利用率,严重阻碍锂-硫电池的推广应用。综述了近年来石墨烯和石墨烯基复合自支撑中间层材料在锂-硫电池中的应用,例如,通过物理或化学限域的方法减缓多硫化物的穿梭并改善锂-硫电池电化学性能等,并对石墨烯基复合自支撑中间层材料未来在锂硫电池中的实际应用进行了展望。  相似文献   
8.
Porous carbon derived from rice husk has been prepared and subsequently be used as carbon support to in situ fabricate hierarchical MoS2 microspheres. The X-ray powder diffraction characterization indicates that the graphite structure exists in the obtained rice husk carbon which is beneficial for the enhancement of the charge transfer speed. MoS2 microspheres on the surface of rice husk carbon present hierarchical structure with nanosheet subunit, and exhibits looser morphology than the individual MoS2 due to the lattice shrinkage. Based on the synergistic effect of MoS2 and the rice husk carbon, MoS2@RHC composite displays excellent lithium storage performance. The charge-transfer resistance of the MoS2@RHC composite is great lower than that of the individual materials. This result leads to the superior cycling stability and rate capability based on the favorable interface kinetics with faster lithium ion diffusion. The lithium charge-discharge mechanism of the composite is also further investigated. The log (peak current) versus log (scan rate) plot reveals that the current is predominantly controlled by the diffusion kinetics during the lithiation and delithiation process.  相似文献   
9.
Fluorine and oxygen co-doped graphene with controllable element coverage was effectively synthesized through simultaneously fluorinating and reducing graphene oxide by pyrolysis of fluorinated graphite. Morphology investigation indicates that the doped graphene is of few-layered thickness, and the prepared films exhibit layered structure through cross-section. Chemical composition analysis confirms that fluorine has been grafted onto graphene scaffold through CF covalent bond, and the doping level can be readily manipulated just by adjusting the reaction temperature. The structural changes of graphene induced by the controllable doping thus facilitate the tunable electrical property, which can be tuned over several orders of magnitude. These results indicate our method is not only potentially useful to tailor the chemical surface and electronic structure of graphene, but also can find applications in novel electronic devices based on graphene co-doped with different dopants.  相似文献   
10.
Highly electrically conductive ceramic material based on aluminosilicate/graphene nanocomposite has been prepared by high pressure (400 MPa) compaction of montmorillonite intercalated with polyaniline followed with the high temperature (1400 °C) treatment in argon atmosphere. Tablets pressed from polyaniline/montmorillonite intercalate exhibits strong texture due to the disk-shaped montmorillonite particles and, consequently, the high anisotropy in conductivity. The high temperature induced phase transformation of montmorillonite into cristobalite and mullite preserved the aluminosilicate layered structure and created good conditions for formation of graphene sheets from polyaniline layers intercalated in montmorillonite. Therefore, the texture and anisotropy in conductivity remain preserved in resulting aluminosilicate/graphene tablets, while the in-plane conductivity in aluminosilicate/graphene tablets is 23,000× higher than the conductivity of uncalcined polyaniline/montmorillonite tablets. Simple fabrication method of aluminosilicate/graphene tablets is very promising for the manufacturing of the electrically conductive and tough ceramic material, which can be exposed to corrosive environment as well as to high temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号